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1 Introduction

Trust region methods (TR) are an important class of iterative methods for
solving nonlinear optimization problems. In an unconstrained minimization
problem, a step to a new iterate is obtained by minimizing a local model of the
objective function over a restricted region centered about the current iterate.
The size of this restricted region depends on how well the local model predicts
the behavior of the objective function. This strategy will force convergence
of the iterates from an arbitrary starting point to a point which satisfies the
first-order necessary conditions. Motivation and a survey of TR methods for
the smooth case can be found in Moré (1983), see also Chapter 6 of Dennis
and Schnabel (1983) for unconstrained problems. In the past decade, many
trust region methods for minimizing a nonsmooth objective function have
been proposed and applied to the nonlinear equations problem, the nonlinear
fitting problem, and the constrained optimization problem.

In this paper we consider trust region methods for the unconstrained
minimization of a nonsmooth function, i.e.,

min f(z) (1)

where f: R* — R is a nonsmooth function and may represent the objective
function of a nonsmooth unconstrained optimization problem or a nonsmooth
penalty function for a constrained optimization problem, such as the [, norm
or [y norm penalty function.

We begin the TR iteration from a starting point zo which may not be
close to a solution of (1). Let Lo = {z | f(z) < f(zo)} be the level set of
f at zo. We build at each iteration a local model m(zx, px)(s) which is an
approximation of f(z + s) for small s, and py € R' is an I-dimensional pa-
rameter vector which may change from iteration to iteration. For example, py
might specify model curvature. Next we approximately solve the subproblem

SUB(IBk,pk; 51:):

min  m(zk, pr)(s)
st sl < b,



to obtain a trial step s, that satisfies
llskll < 6k (2)
and
m(zk, pr)(0) — m(z, pi)(sk) > T[m(zk, pr)(0) — m(ze, pr)(sx)] 20 (3)
where s} is a solution of SU B(zy, pk; 6k), i.e.,
st € argmin{m(zx, pi)(s) | |Isl| < &k},

and 0 < 7 <1 is a fixed constant. The positive number §; is called the TR
radius. We accept the step s; and set T4y = 4 + s if

aredy

Tk = > ¢ (4)

predy

where cg is a fixed constant in (0, 1), and

aredy =  f(zx) — f(zx + sx) (actual reduction)
predy = f(zx) — m(zk, pr)(sk) (predicted reduction).

Otherwise we repeat this process using a smaller 6; in SU B(zy, px; 6x). This
leads us to the following basic TR algorithm:

at the k-th iteration,

STEP 1 : approximately solve the subproblem SU B(z, p; é«)
to obtain sj satisfying (2) and (3);

STEP 2 : compute r; according to (4);

STEP 3 : if r, < ¢o, then set xx41 = Tk, Pry1 = px, reduce &
by podr and go to STEP 1,

otherwise, set zy4; = 4 + sk, update the TR radius é; to
Ok+1, update pi to priq and go to STEP 1;

where 1 > ¢ > 0 and 1 > pg > 0 are fixed constants.



It is obvious that this is a conceptual TR algorithm since we have omit-
ted details needed to specify a complete procedure, for example, a stopping

criterion, an updating rule for é; and a numerical method for determining sy
in STEP 1.

An approximate solution s; of the TR subproblem SU B(z,pk;ék) is
required to satisfy criterion (3). This implies that the step si attains at
least a fixed fraction 7 of the optimal decrease that can be obtained from
the TR subproblem. The exact solution s} of the TR subproblem appears
in (3) only for comparative purposes. We expect that in general it will not
be necessary to compute the exact solution in STEP 1. In the smooth case,
Byrd, Schnabel and Shultz (1988) prove under a mild assumption that the
widely used sufficient decrease criterion for an approximate solution of the
TR subproblem implies (3). If the TR subproblem can be transformed into a
linear programming problem, criterion (3) may be checked using information
from the dual problem. There is an advantage of using criterion (3) in the
nonsmooth case because it does not require gradient information.

This paper focuses on a unified approach to the global convergence of our
basic TR algorithm. We will attempt to identify some general assumptions
on the objective function and the local model that will allow us to estab-
lish the following three fundamental convergence properties of the basic TR
algorithm:

1. An iterate z is a stationary point of f in (1) if for 6 > 0, the step
sx = 0 1s obtained in STEP 1.

2. Reducing 6x in STEP 3 eventually guarantees r, > ¢o where 1 > ¢o > 0.
Equivalently, if the basic TR algorithm loops infinitely often between
STEP 1 and STEP 3 with 44, = z4, then the current iterate z; must
be a stationary point of f in (1).

3. Any accumulation point of {r,} generated by the basic TR algorithm
is a stationary point of f in (1).

In this way we will have obtained a general convergence theory for TR meth-
ods. We will then show that we have a useful theory by demonstrating that



our theory can handle various TR methods which appear in the literature.
The first convergence property is considered in §2. In §2 we also introduce
some notation and terminology for nonsmooth functions, and the assump-
tions that will lead us to a unified global convergence theory. A brief survey
of several nonsmooth TR methods is contained in §3. We show that these TR
methods satisfy the assumptions introduced in §2. The second and the third
convergence properties are considered in §4. In §5, we make some concluding
remarks.

2 Assumptions

The convergence analysis presented in this paper is based on some reasonable
assumptions on the objective functions and the local models employed in
these TR methods. We introduce notation in §2.1, state our assumptions in

§2.2 and derive several properties which are related to these assumptions in
§2.3 and §2.4.

2.1 Notation and Terminology for Nonsmooth Func-
tions

For our applications, it is reasonable to assume that the objective function
f(z) and the local model m(z,p)(s) are always finite, or f(z) < oo for at
least one point z in the level set Ly and m(z,p)(s) < co at s = 0. The bulk
of the material listed below comes from Clarke (1983) Chapter 2.

Definition 2.1 A function f : R* — R is said to be (locally) Lipschitz near
z if for some constants K > 0 and € > 0, f satisfies the Lipschitz condition

| f(z1) — f(z2) IS K||zy — 2|

for all z\ and z, in the e-neighborhood N(z) = {y||ly — z|| < €} of =, where
| - Il is a given norm on R™. The function f is said to be (locally) Lipschitz
on a set U if it is (locally) Lipschitz near every point z € U.



Definition 2.2 The generalized directional derivative of f at x in the direc-

tiond € R* is
£(;d) £ limsup LU T4 = J(6)

y—z, t|0 t

Lemma 2.3 Let f be Lipschitz with constant K near z. Then for every
d € R*, f°(z;d) exists and

| f°(z;d) [< K]|d]|.

Definition 2.4 The generalized gradient of f at x is the set

0f(z) £ {g € R | g7d < f°(=;d), Vd € R"}.
Definition 2.5 A point z is said to be a stationary point of f if 0 € df(z).

Theorem 2.6 (first-order necessary condition) Let f be Lipschitz near
z. If f attains a local minimum at z, then 0 € 9f(z), i.e., x is a stationary

point of f.
Definition 2.7 A function f that is Lipschitz near r is said to be reqular at

z if the one-sided directional derivative

(s d) & tigg LEH) 2 2)

exists for all directions d € R* and

fl(z;d) = f°(z;d).

The function f is said to be regular on a set U if it is reqular at every point

of the set U.

Since the nonsmooth functions discussed in this paper are always assumed
to be locally Lipschitz, we defined regularity in Definition 2.7 only for locally
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Lipschitz functions. This is slightly different than the definition in Clarke’s
book. Convex functions defined on open convex sets are locally Lipschitz as
is demonstrated by the following theorem. Thus, by Lemma 2.3, a convex
function defined on an open convex set always has a generalized directional
derivative. From convex analysis (for example, see Theorem 23.1 on page 213
of Rockafellar (1970)), a convex function always has a one-sided directional
derivative. The following theorem says that these two derivatives coincide
for a convex function.

Theorem 2.8 Let U be an open conver set in R* and let f be a convez
function on U with f(zZ) < +oo for some T € U. Then f is Lipschitz near
any point z in U and f°(z;d) coincides with f'(z;d) for all d in R*. Thus
f is regular on U.

For composite functions, we have a similar result.

Corollary 2.9 Let U be an open convex set in R™ and let f be a convex
function on U with f(§) < +oo for somey € U. Letg:V CR*—-UCR"
be continuously differentiable on V. Then the composite function c(z) =
f(g(z)) is Lipschitz near any point z in V and c°(z;d) coincides with ¢(z;d)
for all d in R™. Thus the composite function is regular on V.

While the following characterization of stationary points does not appear
explicitly in Clarke’s book, it is well known and quite useful. In a minimiza-
tion problem, the following lemma says that a point is a stationary point of
a locally Lipschitz function if and only if, at this point, there do not exist
any descent directions for the function.

Lemma 2.10 Assume that f is Lipschitz near . Then 0 € 0f(z) if and
only if f°(z;d) > 0 for all d in R™.

Proof. The existence of f°(z;d) is guaranteed by by Lemma 2.3. The
proof now follows in a direct manner. O



2.2 Assumptions

Let Lo = {z|f(z) < f(z0)} denote the level set of f in problem (1) at the
starting point o, and m(z, p)'(0;d) (or m(z,p)°(0;d)) be the one-sided (or
generalized) directional derivative of m(z,p)(s) with respect to s at s = 0
along the direction d € R" for p € P C R'. We employ the following basic
assumptions on the objective function and the TR local models.

Assumption 2.1 : The objective function f is regular on Lq.

Assumption 2.2 : For every (z,p) € Lo x P, the local model
m(z,p)(s) is regular with respect to s € R™.

Assumption 2.3 : For (z,p) € Lox P, the local model m(z, p)(s)
satisfies

m(z, p)(0) = f(z)
and
m(z,p)°(0;d) = f*(a;d), ¥d € R* ~ {0},

Assumption 2.4 : For every s € R", the local model m(z, p)(s)
is continuous in (z, p).

Assumption 2.5 : The set P of possible parameter vectors is
bounded.

A general theory cannot accomodate the delicate details of all applica-
tions. In this sense Assumption 2.5 is restrictive. For example, Powell (1984)
and Yuan (1983) developed convergence theories without assuming bounded
parameters. However, as we shall see, in many applications Assumption 2.5
is realistic.

When the local model is convex in s, since convexity implies regularity
by Theorem 2.8, Assumption 2.2 will be satisfied.

Assumption 2.3 requires every local model to be at least a first-order
approximation to the objective function. We observe that no uniformity in
(z,p) is involved in this assumption. In general, we are free in each TR itera-
tion to choose the parameter vector p; provided that the local models always



keep first-order approximation to the objective function and the associated
parameter vector p; remains in the bounded set P. In order to verify As-
sumption 2.3 for a TR method, we will need to know something about the
structure of the local model.

The locally Lipschitz level of generalization for nonsmooth objective func-
tions makes it possible to analyze TR methods involving some nonsmooth
composite functions other than polyhedral norms. For example, the function

c(z) = max(0, min(zy, z2))

where r = (x,z;), is locally Lipschitz but is not a polyhedral norm. The
TR method for solving the optimization problem

min c( F(z))

where F(z) = (fi(z1, z2), f2(z1,22)) is a smooth function, may use the local
model, with first-order approximation in F,

m(z)(s) = e(F(z) + F'(z)s).

The resulting TR subproblem can be converted to a linear programming
problem and can be approximately solved at each iteration by a simplex
method or an interior point method. See Li (1989) Chapter 5 for details of
the convergence analysis. In this paper we deal only with regular objective
functions and we do not consider methods for solving the local models.

2.3 Preventing False Termination of the TR Algo-
rithm

The TR subproblem must be posed so as to avoid false termination, i.e., if
sk obtained from the basic TR algorithm in STEP 1 with é; > 0 happens to
be zero, then the algorithm has converged, i.e., z; is a stationary point of f
in (1). We first show that obtaining s = 0 from the basic TR algorithm in
STEP 1 with § > 0 is equivalent to the fact that s* = 0 solves the TR sub-
problem SUB(z,p;6) with § > 0, i.e., if the approximate solution satifying
the two conditions (2) and (3) is zero, then so is the exact solution.
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Lemma 2.11 Let 6 > 0 be the TR radius in the subproblem SUB(z, p; §). If
the step s obtained from the basic TR algorithm in STEP 1 is equal to zero,
then s* = 0 solves SUB(z, p; 6).

Proof. Recall that the step s obtained from the basic TR algorithm in
STEP 1 satisfies (2)
sl <6

and (3)

m(z, p)(0) — m(z, p)(s) 2 7[m(z,p)(0) — m(z,p)(s")] = 0. (3)

If s =0, then m(z,p)(0) — m(z,p)(s*) = 0, which implies s* = 0 solves the
subproblem. O

We will now show that Assumptions 2.1 through 2.3 are sufficient for
preventing false termination.

Lemma 2.12 Under Assumptions 2.1 through 2.3, if s* = 0 solves the sub-
problem SUB(z,p;8) with 6 > 0, then x is a stationary point of f.

Proof. Let x and p be fixed. If s* = 0 solves SUB(z,p;6) with § > 0,
then s* = 0 is a local minimizer of m(z, p)(s). From the first-order necessary
condition (Theorem 2.6), s* = 0 is a stationary point of m(z, p)(s) considered

as a function of s. Since m(z,p)(s) is Lipschitz in s near 0, from Lemma
2.10, we have

m(z,p)°(0;d) >0, Vde€ R".
By Assumption 2.3,
m(z,p)°(0;d) = f°(z;d), Vd e R* ~ {0}.
So
f°(z;d) >0, VYdeR".
From Lemma 2.10, 0 € 0f(z) and z is therefore a stationary point of f. O

Thus under the assumptions of Lemma 2.12, if = is not a stationary point
of the objective function f in (1), then any solution s* of SUB(z, p; §) with
6 > 0 will not be zero. Therefore from Lemma 2.11, no trial step s obtained
in STEP 1 will be zero. We will use this result in our later analysis.

10



2.4 Conditions Equivalent to First-Order Approxi-
mation

Assumption 2.3 requires that for regular functions, the one-sided directional
derivatives of the objective function f in (1) and the local model m(z, p)(s)
must coincide. In many nonsmooth cases, it is more convenient to check if

8z, p)(s) & LEF9) = m(zp)(s)
’ sl

converges to zero as ||s|| converges to zero, or if

f(z +td) — m(z, p)(td)
£ 14l

converges to zero for all d € R* ~ {0} as ¢ | 0. The next lemma shows that
these three conditions are equivalent for regular functions.

0(z,p)(td) =

Lemma 2.13 Under Assumptions 2.1 and 2.2, for (z,p) € Lo x P, the
following three conditions are equivalent:

1. Assumption 2.3 :
m(z,p)(0) = f(z),
m(z,p)*(0;d) = f°(z;d), Vd € R" ~ {0};

lim 6(z, = 0;
m_0(z,p)(s)
ltll%lG(a:,p)(td) =0
foralld #0 in R".
Furthermore, any one of these conditions implies that, if the step s obtained

from the basic TR algorithm in STEP 1 with § > 0 in SUB(z,p; ) is equal
to zero, then x is a stationary point of f.

11



Proof. We first prove that the first condition implies the second condi-
tion. Suppose that Assumption 2.3 holds. If the limit of §(z,p)(s) is not

zero, then there must exist a sequence {s;} and € > 0 such that ||si]] — 0
and

|9($,P)(3k)| - lf(z + Sk) - m(w’p)(sk)l > e

[lsll

Let tx = ||sk||, di = si/||sk||. Since m(z,p)(0) = f(z), we can write
Sz + tud) = £(z) _ m(z,p)(0 + tude) = m(z,)(0)

H(x’p)(sk) = tr te
Since ||di|| = 1, there must exist a subsequence {di,} and d. such that
ldi, || = lldu]l =1, dy; — d. as it — oo, and |8(z, p)(sk;)| > €. Let {K’} denote

the index set {k;} of the above subsequence. The first term of 8(z,p)(sk,)
can be written

f(z 4 tedi) = f(z) _ flz +tedi) = fz + tid.) G + teds) — f(2)

tk tk tk

for k € {K’}. Since f is Lipschitz near z from Definition 2.7, we have

flz +tdi,) = flz + trida)
17

! | < Kl|dy; — d.||

where K is the Lipschitz constant of f near z, and

WICES ALY )

1—00 tki

= f*(z;d.).

Thus the first term of 6(z, p)(sk,) converges to f°(z;d.) as ¢ — oco. Similarly
the second term of 8(x,p)(sx;) converges to m(z,p)°(0;d.) as 1 — oco. By
Assumption 2.3, m(z,p)°(0;d.) = f°(x;d.). Thus the limit of 6(z,p)(sk,)
exists and is equal to 0 as ¢ — oo, which contradicts |0(z,p)(sk,)| > e.
Therefore the limit of (z, p)(s) must be zero as ||s|| converges to zero.

It is obvious that the second condition implies the third condition. Finally
we will show that the third condition implies the first condition. Suppose

that
f(z +td) — m(z, p)(td)

=0
t |dll

limé(z,p)(td) = lin

12



for all d in R™ ~ {0}. Recalling the definition of 8(z, p)(s), we have
f(@ + td) = m(z, p)(td) + 0z, p)(2d) t |d]
where

ltll%l O(z,p)(td) =0

for all d in R* ~ {0}. Since f(z + td) and m(z, p)(td) as functions of ¢ are
continuous at ¢ = 0, by letting ¢ | 0, we obtain f(z) = m(z,p)(0). It also
follows from the above expression that

fo((l,';d) — hmf(x+td)_f($)

tlo t
=t ERUD DO | g )

= m(z,p)°(0;d)
for all d in R™ ~ {0}.

From Lemma 2.11 and Lemma 2.12, the first-order approximation in As-
sumption 2.3 or any of the equivalent conditions also guarantees that z is
a stationary point of f in (1) when the step s obtained from the basic TR
algorithm in STEP 1 with § > 0 in SUB(z, p; §) is equal to zero. O

3 Case Studies

As nonsmooth norms and nonsmooth penalty or merit functions are widely
employed in both constrained and unconstrained optimization problems, non-
smooth TR methods and their convergence analysis have become an active
research area in recent years. We will introduce some nonsmooth TR meth-
ods in this section and show that the assumptions listed in Section 2 are
reasonable in that they apply to these TR methods. Therefore any conver-
gence theory which follows from these assumptions can be viewed as a unified
approach to global convergence for TR methods.

We let V denote the gradient operator and V? the Hessian operator of a
functional defined in R*. We also use the notation Vc(z) to denote c¢'(z)7,
the transpose of the Jacobian matrix at z for a function ¢: R® —» R™.

13



3.1 The Smooth Problem

The smooth problem
min f(z),

where f : R* — R is assumed to be continuously differentiable, can be solved
by the basic TR algorithm with the local model

m(zk, Be)(s) = f(zx) + Vf(ze)Ts + %STBkS,

where each By in m(zk, By)(s) is assumed to belong to a bounded set P in

R™". Obvious choices for By are By = 0, or By = V?f(z;) when f € C2.

Now we show that the assumptions listed in Section 2 are satisfied for
the local model m(z, B)(s). The continuous differentiability of f implies the
regularity of f. Since m(x, B)(s) is linear or quadratic in s for every (z, B),
the local model is regular in s and Assumption 2.2 is satisfied. Since

f(z) = m(z, B)(0),
fo(zys) = Vf(z)Ts,

and

m(z, B)°(0;s) = V f(z)Ts,

for every £ € R™ and B € R™ ", Assumption 2.3 holds. Assumption 2.4
holds because continuity in (z, B) of m(-,-)(s) follows from the continuity of
f(-) and Vf(-). Assumption 2.5 holds as long as the matrix By is chosen
from a bounded set P C R™"*™,

Therefore any convergence analysis based on our assumptions will apply
to the smooth objective function f and the local model m(z, B)(s) with any
norm including a nonsmooth norm employed in the TR subproblem.

Powell (1984) obtained a convergence theorem, which is similar to The-
orem 3.2 in Section 3.3, for TR methods for smooth unconstrained mini-
mization under weaker assumptions on the second derivative approximation

By.

14



3.2 Fletcher’s TR Method

Fletcher (1982), (1984), (1987) suggested a TR method to solve nonsmooth
unconstrained problems of the form

min ¢(z) £ f(2) + h(c(x)) (6)
where f : R* — R and ¢ : R* — R™ are twice continuously differentiable,
and A : R™ — R is the polyhedral convex function

h(z) = miax(h? T+ b) (7

where the vectors h; and the scalars b; are given. The [; and /., penalty
functions

pi(z) = f(z) + plle(z)]
Poo(2) = f(z) + pllc(2)lo0

with penalty parameter p are often used in solving the smooth equality con-
strained problem

s.t. ¢(z) =0,
and can be written in the form (6).
The basic model algorithm and convergence analysis of Fletcher’s TR

method were given in Fletcher (1982). This material is also reviewed in the
paper Fletcher (1984) and in the book Fletcher (1987).

The basic local model employed in Fletcher’s TR algorithm is
m(xk’ /\k)(s) = (8)
f(zi) + Vf(ze)Ts + 35T B(zk, A*)s + h(c(zx) + Ve(zk)Ts),

where m
B(zr, AF) = V(i) + 3 MV2¢i(z2)
i=1

and Af is the i-th component of the multiplier A* associated with the previous
TR subproblem.

15



The step in Fletcher’s algorithm is accepted if

¢(zk) — Sk + k)
= >co=0.
" b(ak) — m(z ) (sr)
A global solution of the TR subproblem in STEP 1 is required in Fletcher’s
algorithm. The following global convergence theorem was given by Fletcher.

Theorem 3.1 (Fletcher (1982), (1987)) Let the sequence {z} generated
by the TR algorithm be contained in a bounded (convez) set D and let f, c
be C? functions whose second derivative matrices are bounded on D. Then
there exists an accumulation point ™ of the iteration sequence such that z™
is a stationary point of ¢.

We will show that the objective function ¢(z) given by (6) is regular and
Assumptions 2.2 through 2.5 hold for the local model m(z, Ax)(s) under the
assumptions made by Fletcher in Theorem 3.1.

Since h is convex, by Corollary 2.9, ¢(z) given by (6) is regular on D and
m(x, A)(s) is regular in s for every (z,\) € D x R™, i.e., Assumptions 2.1
and 2.2 hold.

From Lemma 2.13, we may verify Assumption 2.3 by checking if
¢(z +5) — m(z, A)(s)
Il

converges to 0 as ||s|| converges to 0 for every (z,A) € D x R™. From the
Taylor expansion for f at z,

0(z,A)(s) =

flz+38)= f(z)+ Vf(z)Ts + %sTvzf(f)s
where £ — z as ||s|| = 0. We have

h(c(z + 3)) — h(c(z) + Ve(z)Ts)
sl

0z,2) = 3sTIV(E) - V) +

1 & s
=3 AT Vii(z)—.
2 ; sl

16



Since f is twice continuously differentiable on D, the first term of 8(z, A)(s)

lST 2 V2 ()
57 (VA6 = V@

converges to 0 as ||s| — 0. From Theorem 2.8, the convex function A is
Lipschitz near x with Lipschitz constant K, which implies that the second
term of §(z, A)(s)

[h(c(z +5)) = h(clz) + Ve(@)Ts)] . le(z +5) = ofz) = Ve(z)Ts]|
sl N sl

converges to 0 for every z € D as ||s|| — 0 because of the Fréchet differen-
tiability of the function c. The third term of 6(z, \)(s)

u“ T2 S
Vie(z)—
2N Vi)

converges to 0 as ||s|| — 0 for every (z,\) € D x R™. Therefore Assumption
2.3 holds.

l\’)lb—‘

Since f and c are twice continuously differentiable and the convex function
h is continuous, the local model m(z, A)(s) is continuous in (z,A) for every
s in R™, i.e., Assumption 2.4 holds.

Under the above assumptions, Fletcher proved that the multiplier A\* is
uniformly bounded in k. For example, see (1.6) in Fletcher (1984) or Lemma
14.2.1 in Fletcher (1987). This says that the parameter vectors AF are chosen
from a bounded set, i.e., Assumption 2.5 holds. Fletcher was aware that his
convergence theory still holds if the matrices B(xx, \*) in (8) are replaced
with matrices By belonging to a bounded set. See Section 4 of Fletcher
(1984) for example. This is also an implication of our unified theory.

Notice that we only deal with the case that r(z,p)(s) > ¢o > 0 in this
paper, i.e., the TR step is accepted when the ratio is greater than a positive
constant ¢o. The TR step is accepted in Fletcher’s TR algorithm when the
ratio r(z,p)(s) > 0, i.e., co = 0. Fletcher’s convergence result in Theorem
3.1 says that there exists an accumulation point of the TR iterates which is a
stationary point of the objective function. The convergence result obtained
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in this paper for the slightly more restrictive acceptance test is the stronger
result that any accumulation point of the TR iteration sequence is a station-
ary point of the objective function. Hence by making a slight modification
of Fletcher’s algorithm we establish a stronger result.

3.3 Powell and Yuan’s TR Method

Powell (1983) considered a TR method to solve

min h(F(z)),
where F'(z) = (fi(z),..., fu(2))T : R* — R™ is continuously differentiable
and h: R™ — R is convex. He used the local model

m(zk, Be)(s) = h(F(zx) + F'(zx)s) + %STB);S

where By is an n x n symmetric matrix. This general type of nonlinear
problem includes the minmax problem

min max | fi(z)| = || F(z)||e,
the nonlinear !, problem

min 3 1) = 1P,
and the nonlinear least-squar; problem

mim = IF(@)]

Yuan (1983) proved the following global convergence result for Powell’s TR
method.

Theorem 3.2 (Yuan (1983)) Assume that F is continuously differentiable
and h is conver in R*. If h(F(z)) is bounded below, the sequence {z;}
generated by the TR algorithm is bounded, and if the inequality

| Bx |I< c3 + cak,
where c3,c4 are positive constants, holds for all k, then there exists an accu-

mulation point of {xy} which is a stationary point of h(F(z)).
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We only consider the case when By is bounded for all k£, so that the
local model m(z, B)(s) satisfies Assumption 2.5. Since h is convex and F is
continuously differentiable, by Corollary 2.9, the composite function A(F(z))
is regular on R™ and h(F(z)+ F'(x)s) is regular in s for every z € R™. Since
the second term of m(z, B)(s) is differentiable in s for every B € R**", the
local model m(z, B)(s) is regular in s for every (z, B) € (R" x R™"), i.e.,
Assumptions 2.1 and 2.2 hold.

We verify Assumption 2.3 by considering the second equivalent form in
Lemma 2.13. From the Fréchet differentiability of F', we have

F(z+5) = F(x) + F'(2)s + o(,)]ls]

where
A F(z+38)—F(z) - F'(z)s
(e & FLEH )= F) 2P
and
lim [lo(z,9)]| =0

for every z € R™. Thus,
h(F(z +s)) —m(z, B)(s) =
1
h(F(z) + F'(z)s + o(z, s)||s||) = h(F(z) + F'(z)s) — §STBS.
The convexity of h implies from Theorem 2.8 that h is Lipschitz near F(z)+
F'(z)s with constant K, so that

h(F(z + s)) — m(z, B)(s)|
sl
for every (z, B) € R* x R**". Therefore

oz, B)(s)| = < Kllo(z,)ll + 3llslIBI

lim 4(z, B)(s) =0

lIsll—o
for every (z, B) € R* x R**". By Lemma 2.13, Assumption 2.3 holds.

The local model m(z, B)(s) is continuous in (z,B) for every s € R"
because of the continuous differentiability of F' and the continuity of the
convex function A. Thus Assumption 2.4 holds.
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We have demonstrated that Powell and Yuan’s TR method satisfies As-
sumption 2.1 through Assumption 2.5 under the assumptions of Theorem 3.2
and the additional assumption that {By} is bounded. This allows us to use
Theorem 4.3 to prove that any accumulation point of the TR iterates is a sta-
tionary point of the objective function A(F(z)). Theorem 3.2 says that there
exists an accumulation point of the TR iterates which is a stationary point
of the objective function A(F(z)). Thus we make a stronger assumption and
derive a stronger conclusion.

3.4 Zhang, Kim and Lasdon’s Successive Linear Pro-
gramming Method

Zhang, Kim and Lasdon (1985) suggested a TR algorithm for solving the
constrained problem

min ho(z)
s.t. h,(a:) = 0, t= 1, ...,k‘,
hij(z) <0, j=k+1,...,m,

where h; : R* — R, ¢ = 0,1,...,m, are continuously differentiable. They
solve the constrained problem by minimizing an /; penalty function

k - m
f(z) = ho(z) + Z:w,- | hi(z) | + Z w; maz(0, hi(z)),

i=k+1

where w;, ¢ = 1,...,m, are penalty parameters. The local model
k
m(z)(s) = ho(z) + Vho(z)Ts + Zw; | hi(z) + Vhi(z)Ts | +
i=1

> w; maz(0,hi(z) + Vhi(z)Ts)
t=k+1
is employed in the TR subproblem
min  m(z)(s)
st |8l < 6.
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This subproblem can be transformed into a linear programming (LP) prob-
lem. Thus they compute a stationary point of the penalty function f(z) by
solving a sequence of LPs; hence their algorithm can be viewed as a succes-
sive linear programming (SLP) method. They obtained the following global
convergence theorem.

Theorem 3.3 (Zhang, Kim and Lasdon (1985)) If h;, : = 0,1,...,m,
are continuously differentiable and the level set of f(z) at the initial point of
the algorithm is bounded, then the sequence {z;} of TR iterates has accumu-
lation points, and every accumulation point of {zi} is a stationary point of
f(z). Furthermore, if an accumulation point is feasible for the constrained
problem, then it is a Kuhn-Tucker point of the constrained problem.

We now show that this TR method satisfies Assumptions 2.1 through
Assumption 2.4 under the assumptions made by Zhang, Kim and Lasdon
(1985). Assumption 2.5 is not applicable in this case because no parameter
vector is involved in the local model m(z)(s). Here the penalty parameters w;
are considered to be constants and are not changed iteration by iteration in
the TR method since they appear in both the objective function and the local
models. Since every h;(z) is continuously differentiable and the functions |¢|,
maz(0,t) are convex, by Corollary 2.9, the composite function f(z) is regular
in R*. Also m(z)(s) is convex in s for every z € R™ because of the convexity
of the functions |t| and maz(0,t). Hence Assumptions 2.1 and 2.2 hold by
Corollary 2.9. The continuous differentiability of h; and the continuity of
the functions |t| and maxz(0,t) imply that m(z)(s) is continuous in z for all
s € R*, i.e., Assumption 2.4 holds.

We need to show that Assumption 2.3 holds. From the Fréchet differen-
tiability of h;, we have

hi(z + s) = hi(z) + Vhi(z)Ts + oi(z, s)||s]|

t=0,1,...,m

where
a hi(z + ) — hi(z) — Vhi(z)Ts

oile, ) = sl
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as ||s|| — 0 for every € R™. The inequalities

| 1hi(z + )| = |hi(z) + Vhi(2)Ts| | < low(z, s)llls]

i=1,...,k
and
|maz(0, hi(z + s)) — maz(0, hi(z) + Vhi(z)Ts)| < |oi(z, 3)||s]|
i=k+1,...,m
imply that

@ +8) —m@)) oz, 6))+ S wilon(e, o),

sl i=

which shows that

0z, s) = f(z + s)”—”m(x)(s)

as ||s|| — O for every £ € R*. By Lemma 2.13, Assumption 2.3 holds.

-0

3.5 Duff, Nocedal and Reid’s TR Method

Duff, Nocedal and Reid (1987) suggested a TR method to solve a system of
nonlinear equations

F(z)=0

where F' : R* — R™ is continuously differentiable. As a globalization strategy
for a locally convergent method, for example, Newton’s method or a secant
method, they solve the unconstrained nonsmooth problem

min f(z) = ||[F(z)|,
by a TR method with subproblem

min m(zx)(s) = ||F(zx) + F'(zk)s|lx
s.t. I$]lco < bk
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They pointed out that in this way one can use LP techniques to solve the TR
subproblem in each iteration, and therefore take advantage of any sparsity
patterns in the Jacobian F'(z;) more readily than in an /; TR method.
Instead of the ratio test in the basic TR algorithm, they employed a sufficient
decrease condition

IE(z + s)lly < |1 (@)l ~ & || F'(2)s]|1,

where 1 > a > 0 is a fixed constant, to accept or reject the new iterate and
used the ratio r; as a basis for reducing or increasing the TR radius.

Duff, Nocedal and Reid (1987) did not give a convergence result and
pointed out that their approach of updating the TR radius is open to im-
provement. Their method is considered in this paper to be a special case
of El Hallabi and Tapia’s TR method. Therefore the discussion on the as-
sumptions and the convergence for their method is contained in the next
subsection.

3.6 EIl Hallabi and Tapia’s TR Method

El Hallabi and Tapia (1987) analyze an arbitrary norm TR method for solving
a system of nonlinear equations

F(z)=0,

where F': R* — R™ is continuously differentiable. To obtain a solution, they
solve the unconstrained nonsmooth problem

min f(z) = ||F(z)],
by a TR algorithm as a globalization strategy with the local model
m(z)(s) = [|F(z) + F'(z)s]].
Different norms are allowed in the various parts of the subproblem

min  m(ze)(s) = || F(zx) + F'(zk)s|la
s.t. ”S“b S 6/:
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where || - ||o and || - || are any two norms on R™. In their algorithm, s is a
solution of the subproblem in STEP 1, and 6 is reduced in STEP 3 until a
sufficient decrease condition

flee +sk) < flae) + o y(zx, i)
is satisfied, where the choice for v(z; s), for example, may be
1(z,5) = [|[F(z) + F'(z)slla = | F(2)lla = m(z)(s) — m(z)(0).
Thus, if 7(z, s) < 0, then
f(z+35) < f(z) + aq(z,s)
which is equivalent to

f(z +5) = f(z)
m(z)(s) — m(z)(0)

the standard TR ratio test.

>a>0,

It is worth mentioning that El Hallabi and Tapia (1987) established the
inequalities
13(2,8) < 72(x, 8) < Nz, )

for the three choices of 4(z, s)
n(e,s) = |F(z) + F'(z)s| — || F(z)]|

12(2,8) = f°(2; 9)
13(258) = —[|F'(2)s,
which means that the decreases a|v;(z, s)| required by the algorithm in each

iteration with these three different choices of y(z, s) satisfy the inequalities

alys(e,s)| 2 alrn(z,s)| = aln(z,s)| > 0.

Clearly, v3 corresponds to Duff, Nocedal and Reid’s test. Also v,(z,s) is the
preferred choice among the three in the sense that it asks the least decrease
in each iteration and is most easily satisfied.
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El Hallabi and Tapia (1987) proved the following global convergence the-
orem for their TR algorithm with various upper semi-continuous ¥(z, s) with
respect to (z, s) in the sufficient decrease condition. Their theory handled the
choice 41, a modified form of 4., and could not handle 3. They conjectured
that the choices v, and 73 do not lead to globally convergent algorithms.

Theorem 3.4 (El Hallabi and Tapia (1987)) If F is continuously dif-
ferentiable and the level set of f at the initial point is bounded, then any
accumulation point of the sequence {z\} generated by the TR algorithm is a
stationary point of f.

Since the different norms in the subproblem do not cause any difficulty
in the global convergence we omit the subscripts on the norms in the rest of
this section. El Hallabi and Tapia (1987) were aware that global convergence
can also be obtained without any difficulty if the function F in the problem
is a mapping from R" to R™ where m < n. Hence consider F' : R* — R™
in the rest of this section. We will show that Assumptions 2.1 through 2.4
hold. Thus the convergence analysis given in §4.1 and §4.2 for the basic
TR algorithm applies to El Hallabi and Tapia’s TR method under their

assumptions.

Since the norm is a convex function and F is continuously differentiable,
from Corollary 2.9, the composite function f is regular. The convexity of
the norms also implies that m(z)(s) is regular in s for every z in R", i.e.,
Assumptions 2.1 and 2.2 hold. It is easy to see that the local model m(z)(s)
is continuous in z for every s € R", i.e., Assumption 2.4 holds. The Fréchet
differentiability of F' implies that

F(z +5) = F(z) + F'(z)s + o(z, s)|s]|

where

A F(z +38)— F(z) - F'(z)s
sl

o(z,s) — 0
as ||s|| — O for every z € R*. Thus

[f(z 4 8) = m(z)(s)| < |F(z +s) = [F(z) + F'(z)s]l| = |lo(=, s)lll|s]l-
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It follows that

[f(z + s) — m(z)(s)]
sl

as ||s|| — 0 for every z € R*. From Lemma 2.13, Assumption 2.3 holds.
Assumption 2.5 is not applicable in this case because no parameter vector
is involved in the local model m(z)(s). We have verified Assumption 2.1

through Assumption 2.4 for the local model under the assumptions made by
El Hallabi and Tapia (1987).

10(z, s)| =

< |lo(z, )l — 0

4 Convergence Analysis

Recall that the approximate solution s; of the subproblem SU B(zy, py; 6;)
obtained in STEP 1 of the basic TR algorithm satisfies conditions (2) and
(3). Since an exact solution s} satisfies the above conditions with 7 = 1, the
convergence results obtained in this section can be applied to a TR iteration
that uses the exact solution in STEP 1.

The following theorem says that if the current TR iterate z; is not a
stationary point of f, then there must exist a small TR radius é and a
neighborhood Ny of z such that the ratio r(z,p)(s) > ¢ for any z € Ny and
0 < é < 6 where s satisfies the two conditions (2) and (3) for the subproblem
SUB(z,p;6) and ¢ € (0,1). Thus if the basic TR algorithm loops infinitely
often between STEP 1 and STEP 3 with z44; = z4 and Pk+; = px for 3 >0,

i.e., no such & and N, exist, then z; must be a stationary point of f.

Theorem 4.1 Let (£,p) € Lo x P be given and let co be in (0,1). Under
Assumptions 2.1 through 2.5, if & is not a stationary point of f, then there
ezist § > 0 and & > 0, such that, for every x and § satisfying ||z - &|| < ¢
and 0 < 6 < 3, we have

) = f+s)
SR Rl T e e T

for any s obtained from STEP 1 of the basic TR algorithm for the subproblem
SUB(z, p;é).
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Proof. Since £ is not a stationary point of f, we know from Lemma 2.10
that there must exist a direction d € R™ with ||d|| = 1 such that f°(Z;d) < 0.

Let n = —f°(&;d) > 0. By the definition of the generalized directional
derivative,
f°(2;d) = limsup f(z+8d) = f(z) =-n<0.
r—z, 8610 )
Hence there exist € > 0 and é > 0 such that
fetsd)— =) _ _n
) 2’
t.e.,
ared(z,6d) = f(z) — f(z + 6d) > % 5 (9)
for any r and § that satisfies ||z — &|| < ¢ and 0 < § < &.

From Lemma 2.13, Assumption 2.3 implies that for every (z,p) € Lo x P
and, in particular, for every z € N(¢) = {z |||z - 2| <e},
f(z +s) = m(z,p)(s) + O(z, p)(s)| s
where
8(z,p)(s) = 0.
It follows that the actual reduction for any s with ||s]| < § can be written as
ared(z,s) = f(z) - f(z +5)
= f(e) —m(z,p)(s) - 6(z, p)(s)lls]l
= pred(z,p)(s) - 0(3},[))(3)”8”,

where pred(z,p)(s) £ m(z,p)(0) — m(z,p)(s) = f(z) — m(z,p)(s) is the

predicted reduction. Thus
_ ared(z,s) _ 0(z,p)(s)|ls||
r(z,p)(s) = pred(z,p)(s) - pred(z,p)(s)’

for every z € N(e). Since s = éd is feasible for SUB(z, p; §), it follows from
(9) that

lim
|Isl|—o0

(10)

g § < ared(z,6d) = pred(z, p)(6d) — 8(z, p)(6d) (11)
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for every ¢ € N(¢) and 0 < § < 4.
Let s* be an exact solution of SUB(z,p; ). Then
m(z, p)(s*) < m(z,p)(6d)
which implies that
pred(z, p)(s™) 2 pred(z, p)(éd)
for every (z,p) € N(e) and 0 < 6 < 4. From (11), we have
pred(z,p)(s*) > pred(z, p)(éd) > % 6+6(x,p)(éd) for § > 0 sufficiently small.

Since the right-hand side of the inequality

§ . § ~ 2
pred(z,p)(s*) ~ 36 +06(z,p)(6d)s ~ 1+ 26(z, p)(8d)

tends to the constant 2/n as é tends to 0, it follows that

pred(z,p)(s*) ~ 7

for small é. For any s obtained from STEP 1 of the basic TR algorithm for
the subproblem SUB(x, p;6), (10) can be written as

lsll 6 f(z) — m(z,p)(s")
§ pred(z,p)(s7) f(z)—m(z,p)(s)’

By conditions (2) and (3) satisfied by s, we have

r(z,p)(s) =1 —-6(z,p)(s) (12)

f(z) = m(z,p)(5")
'S TR (@ p))

1
<=
T

and

5]

PP«
5—1

Since the product in the expression (12) converges to 0 as § converges to 0,
it follows that r(z,p)(s) — 1 as § — 0. Therefore, under assumptions 2.1
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through 2.5, the ratio r(z, p)(s) can be made arbitrarily close to 1 if € and 6
are sufficiently small. Thus we have r(z,p)(s) > ¢o for every 2 € N(¢) and

0 < § <8, where ¢ € (0,1) and s satisfies the two conditions (2) and (3) for
SUB(z,p;6). O

To put the global convergence theorem on a solid basis, we specify the
updating rule for the TR radius 6 in STEP 3 of the basic TR algorithm. Let
0 <c<c <land 0 < pyo <1 < p; be given constants. At the k-th
iteration, the basic TR algorithm becomes

STEP 1 approximately solve SUB(zy, pi; 6k) to obtain s satisfying (2) and
(3)i

STEP 2 compute the ratio ry according to (4);

STEP 3 if ri < co, let zx41 1= Tk, Prt1 := Pr, Sk41 = podx and go to
STEP 1;

otherwise, let zx41 := i + sk, update pr to pry1 and update b to dxyq:

Ok if o< re <e¢,
6k+1 = § .
P16k if o< rg

In the successful TR iterations where ry > ¢y, we set zx41 = = + s and
sk # 0. In the unsuccessful TR iterations where ry < co, we set Txy1 = T
and reduce the TR radius 8; by podx. The feature of the above updating
strategy is that the next trial radius éx4; is not reduced in the successful
iterations, but that 6, approaches 0 for an infinite sequence of unsuccessful
steps. Thus the strategy to update the TR radius employed in STEP 3 is

p06ka Zf Ty < Co,
5k+1 = 6k7 7'f < 1 < €1,
P15k7 Zf < Tg.

The following lemma is needed in the proof of the convergence theorem.

Lemma 4.2 Let {(zk,px)} be a sequence generated by the basic TR algo-
rithm with the updating strategy specified above and let z* be an accumula-
tion point of {zx} where z* is not a stationary point of f in (1). Under
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Assumptions 2.1 through 2.5, for every convergent subsequence zy, — x* in
{zi} with the ratio r(zk,, px,)(sk,) > co > 0, we have

liminf &, > 0,

1—00

i.e., there exists B > 0 such that 6y, > B for ¢ large enough.

Proof. Since the iterates remain the same in the unsuccessful iterations,
we cancel the repeated unsuccessful iterates in the sequence {(x, px)} so that
the sequence {(zx, px)} only consists of successful iterates. Let tx > 0 denote
the number of TR radius reductions to get the successful iterate zx, i.e., we
have t; unsuccessful iterations before we obtain the successful iterate zx. The
superscript m is used to stand for the m-th radius reduction. According to
the update for the next radius,

6l(cm+l) = P051(cm)’ m=0,..,t—1,

8 = 6%,

and
rim) e, m=0,..1t -1,

Te = r,(:“) > co.

In each successful iteration, we have an inital trial radius for the next iteration

s@ 1 & if < m <,
k+1 ™ P15k7 lf < Tk

Hence the inequality
5% = 6 (13)

holds for successful iterations. This reorganization of the sequence {(x, px)}
makes no change to the subsequence {(zx,,ps;)} because it only consists of

successful iterates. Let K, = {0,1,2,...} D K; = {k:}.

From Theorem 4.1, there exist a neighborhood N* = N(z*;¢*) = {z|||z —
z*|| < €*} and a constant 6* > 0, such that r(z,p)(s) > ¢ for every z € N*
and 0 < 6 < 6%, where s satisfies the two conditions (2) and (3) for the
subproblem SUB(z,p;6). For k € K, large enough that z; € N(z*;¢e*), if
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the initial trial radius 6,(:)) > §* for every k € K, then 6,(:)) may need to be
reduced t; times until ry = rff") > cp. Since r}:""l) < ¢y and 5,(:"_1) > 6*, the
radius
bk = 6% = post* 1) > pos* > 0

is bounded below by a positive number for every £ € K, large enough.
Otherwise there exists a thinner subsequence {zx} for k£ € K3 C K, such
that the initial trial radius 6,(:)) < 6* for every k € K3 C K, large enough.
By Theorem 4.1, rﬁo) > ¢o for k € K3. Hence no reduction in the radius is

needed, i.e., t;, = 0 and é; = 6,20) for every k € K3. We omit the superscripts
on 6, and ry for k € K3 in the rest of the proof.

Suppose

lim é; = 0.
kEK;

From Theorem 4.1 for each constant ¢; > c¢o, there exist a neighborhood
N** = N(z*;e**) = {z|||lz — «*]| < €**} C N* and a constant é** > 0 with
0 < e <e*and 0 < §** < 8%, such that r(z,p)(s) > ¢; for every (z,p) € N**
and 0 < 6 < §*, where s satisfies (2) and (3) for SUB(z,p; ). For k € K3
large enough, we have zx € N** and 6, < 6™*.

Let K3 = {¢1,%2,...,¢j,...}. Consider the TR iterations between ¢;_; € K3
and ¢; € K3 for j large enough that

nx *
xi_,' € N ) 61'1' S ) ,7
i.e., the ones between two successive iterates in the subsequence Kj. If the
last iterate z;,_; before z;; is not in N**, i.e.,
*
|zi;-1 — 27|| > €™,

since &;; is very close to z* for j large enough that

i

1
lai, = "l < 3™

then, by (13),

6, = 5,(?) > 6i,-1 2 ||si;—1ll = ||z, — 2o, ]

7

1
2 |lei-1r =27l =l =2l 2 e
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which contradicts 6y — 0 for k € K3 as k — co. Hence z;,_, € N™* for j
large enough.

Assume that the last ¢; > 1 iterates of z;, are in N**, i.e.,
Tiim1yeeny Tijmg; € N7
and z;,_g,_1 is outside N** for j large enough that

6, < 6.

According to the updating strategy, (13) becomes

6(0) > 61']_."1, m= ]., ey 45

tj—m+4l =

Again, if some of these radii are reduced, say 1 > mgo > ¢;j, which is the
largest index among them, i.e.,

5ij—mo < 5~0)

t;—=mo?

then similarly

Therefore

5i] 2 61'1‘—1 = 61(:)11 2 wes 2 5i,-—mo+1 = 6(0) 2 6i3—mo _>. poé*a

t;—=mo+1

which contradicts 6, — 0 for £ € K3 as k¥ — oo. Thus we only need to
consider the worst case

Sy =80 M= 1,0,

which means that the initial trial radius in these iterations is so small that

no reduction is necessary. We also omit the superscripts in these iterations.
Since §;; < 6™ and

6ij—m+1 2 ij—ms M= L,...,q5

we have

6ij—m < 5“, m = 0, 1,...,(]]'.
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From Theorem 4.1,
Tij-m > €, M= 0,1, v Gy

According to the updating strategy,
6ij—m+1 = p15;,_m, m=1,.., q;»

which implies

i
6i,‘—m_ﬁ, m=1,..,4;
with p; > 1. Since, by (13)
5ij—qj Z 61,—q,‘-—-1’
we also have 5
6‘:“11‘1 - %
1
Thus “
4 D& & 1
i < - < 26; s
m,Z=0 v mZ::O T qJ N Z—:0 p1 ‘11 - %

However, since z;,_4,—1 is not in N**, i.e.,
* *’ok
“I‘.]"QJ-l -z “ 2 €

and j is large enough that

1
2, = "l < 57

we have
g;+1 gj+1 gj+1
2 by 2 2 llsgemll 2 1 20 siomll = llog, = g,
m=0 m=0
* * 1 L
2 ”w"j—qj'—l -z - ”xij -z > 56 .
Therefore . 1
6i; > Zs"(l — E),

which contradicts 6y — 0 for k € K3 as k — oo. This completes the proof.
O

We now present our global convergence theorem.
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Theorem 4.3 Under Assumptions 2.1 through 2.5, if * is an accumulation
point of {zx} generated by the basic TR algorithm, then z* is a stationary

point of f.

Proof. Suppose that a subseqence {zy,} approaches z* which is not a
stationary point of f. An unsuccessful iterate in the subsegence can be sub-
stituted by the same successful iterate because unsuccessful iterates remain
the same and make no progress in the basic TR algorithm. If there are some
repeated iterates in the subseqence after the substitution, cancel the repeated
ones. We still use the same notation {zx;} to represent the substituted and
condenced subseqence which only consists of different successful iterates and
approaches z*. Since the parameter vectors {pi,} are bounded by Assump-
tion 2.5, there must exist a thinner subsequence {p;} where k € K’ = {k; }
such that p — p* for k € K'. It is worth pointing out that p* is not neces-
sarily the parameter the modeling technique would associate with z*. Thus
zx — z* and py — p*) for k € K’'. According to Lemma 4.2, there exists a
constant @ > 0 such that

28>0

for k € K’ large enough.

Since r(zk,pr)(sk) > co where s, satisfies conditions (2) and (3) for
SUB(zk, px; 6) and k € K', it follows that

f(zx) = f(zre1) > colf(zx) — m(zx, pr)(sk)]- (14)

In order to derive a lower bound for the right-hand side of (14), consider the
subproblem SUB(z*,p*;3), and call an exact solution s*. Since z* is not a
stationary point of f, by Lemma 2.12, s* # 0 and

f(z*) = m(z",p")(s") E 7" > 0.

The regularity on f implies that f is continuous for every z € Lo. From
Assumption 2.4, m(z,p)(s) is continuous in (z,p) for every s € R*. For
k € K’ large enough, therefore, we have

F(zx) = monpe)(s™) > L,
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where
l|s*|] < B < é,

which shows that s* is also feasible for SU B(x, px; 6x). By (3), sk obtained
from the subproblem SU B(z, px; 6x) satisfies
fl@e) = m(zi,pe)(sk) 2= 7[f(2x) — m(zk, pr)(si)]
> 7[f(zx) — m(zk, pr)(s7)]
7’*
> T 9

where s} is the exact solution of SUB(z,pk;ék) and k € K'. By (14), it
follows that

*

flax) = flare) > o (15)

for k£ large enough and &k € K'.

However, since the series with positive terms

o0

S (oh,) = Flan, )] < i[f(xk..,)—ﬂxki,HM

i=1
= flzk,) - f(z7) < 400,
is convergent, we have
f(mkij) - f(wk;1+1) =0, as j— oo

This contradicts (15) and completes the proof. O

We can also state our convergence theorem in the following manner.
Corollary 4.4 Under Assumptions 2.1 through 2.5, if

1. the level set Lo = {z € R* | f(z) < f(z0)} is bounded, where
zqo is the starting point of the TR iteration,

or

2. the sequence {z:} generated by the basic TR algorithm is bounded,

then the sequence {zx} has at least one accumulation point, and every accu-
mulation point of {zi} is a stationary point of f.
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5 Conclusions

In this paper we have identified five reasonable assumptions, t.e., Assump-
tions 2.1 through 2.5, which have allowed us to produce a general global
convergence theory for trust region methods for nonsmooth optimization.
We have demonstrated that this theory can be viewed as a unified approach
to convergence analysis by showing that a global convergence theory for each
of four very distinct TR applications in the literature can be obtained as
special cases of our general approach. In two of these applications we were
forced to make stronger assumptions, but produced a stronger convergence
theory.

In the cases studied in Section 3, the parameters in the TR local models
could represent information related to first derivatives, second derivatives, or
Lagrange multipliers. As a unified approach, we assumed the boundedness
of these parameters in Assumption 2.5. This boundedness can be derived
in many TR method applications from parameter updating strategies. The
boundedness of the parameters is employed in the proof of Theorem 4.3 to
guarantee the existence of a convergent subseqence. In particular applica-
tions, for example Powell (1984) and Yuan (1983), it may be possible to
establish a convergence theory without assuming bounded parametric infor-
mation. This boundedness assumption seems to be the price we had to pay
for establishing a general theory.
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